Лекция 5
ГЛАВА 5. Лямбды и функции высшего порядка
Что мы расскажем:
· Функции высшего порядка
· Лямбда
· Закрытие
· С помощью и применить
В главе 2 мы обсуждали механику функций Kotlin, и вы уже видели, насколько они похожи на функции Java; вы также видели, насколько они разные.
В этой главе мы вернемся к обсуждению функций, но уже к другому виду функций - к тому виду, который поддерживает функциональное программирование. Возможно, вы использовали лямбды в Java 8; аналогично Kotlin также поддерживает лямбды. В этой главе мы исследуем эти две темы.
Функции высшего порядка
Функции высшего порядка - это функции, которые работают с другими функциями, либо принимая их в качестве параметров, либо возвращая их. Термин «функции высшего порядка» пришел из мира математики, где существует более формальное различие между функциями и другими значениями.
Прежде чем мы сможем перейти к обсуждению «Зачем нам нужны функции более высокого порядка?» нам нужно будет заняться его механикой. Нам нужно знать, как их писать и как они выглядят. Обсуждение «почему» функций высшего порядка может даже появиться в следующих главах, когда мы перейдем к программированию для Android, где есть множество возможностей для эффективного использования функций высшего порядка.
В листинге 5-1 ниже показан пример функции, которая принимает другую функцию в качестве параметра.
Листинг 5-1. Функция, которая принимает другую функцию
fun executor(action:() -> Unit) {
 action()
}

Обратите внимание, как параметр записан в листинге 5-1, действие - это имя параметра, а его тип записывается как () -> Unit, что означает, что типом является функция.
Тип функции записывается с помощью пары круглых скобок, за которыми следует оператор стрелки (тире плюс знак «больше»), а затем следует тип, который функция должна возвращать. В нашем примере из листинга 5-1 наш параметр функции ничего не возвращает, поэтому он объявлен как Unit.
Сначала это может показаться странным, особенно если вы не использовали язык, в котором функции обрабатываются так же, как и переменные. В Kotlin, как и в любом языке, поддерживающем функции высшего порядка, функции являются гражданами первого класса. Мы можем передавать (или возвращать) функции из любого места, где мы можем передавать (или возвращать) переменные. Везде, где вы можете использовать переменную, вы также можете использовать функцию.
Вернемся к листингу 5-1. Если бы мы хотели, чтобы параметр действия имел тип String, то мы могли бы написать что-то подобное в листинге 5.2.
Листинг 5-2. Если действие было типа String
fun executor(action:String) {
 action()
}

Но это не так; мы хотим, чтобы действие было функцией типа. В Kotlin функция - это не просто именованный набор операторов, это еще и тип. Итак, так же, как String, Int или Float, мы можем объявить переменную как имеющую тип function. Тип функции состоит из трех компонентов:
(1) список типов параметров в скобках;
(2) оператор стрелки; и
(3) возвращаемый тип.
В листинге 5-1 список типов параметров в скобках пуст, но это не всегда так. Сейчас он пуст, потому что функция, которую мы собираемся передать функции Execution (), не принимает никаких параметров. Тип возврата Execution () - это Unit, потому что функция, которую мы намереваемся передать ему, не возвращает никакого значения - что также не всегда будет иметь место, вы можете иногда захотеть вернуть Int или String.
Теперь, когда мы понимаем, как объявить параметр функционального типа, давайте посмотрим, как объявить и определить переменную как функционального типа. См. Листинг 5-3.
Листинг 5-3. Как объявить и определить тип функции
val doThis:() -> Unit = {
 println("action")
}

LHS (left-hand side - левая часть) не требует подробного объяснения, мы просто объявляем переменную с именем doThis как имеющую тип function, и эта функция ничего не возвращает, поэтому ее возвращаемый тип объявлен как Unit. Правая сторона (правая часть) выглядит как функция без заголовка (ключевое слово fun и имя функции), это лямбда. Мы доберемся до лямбды в следующем разделе. Возвращаясь к нашим примерам кода, в листинге 5-4 показано, как объединить executor () и doThis.
Листинг 5-4. Полный код для примеров doThis и executor ()
val doThis:() -> Unit = { ➊
 println("action")
}
fun executor(action:() -> Unit) { ➋
 action() ➌
 action.invoke() ➍
}
fun main(args: Array<String>) {
 executor(doThis) ➎
}

➊ doThis объявлен и определен как тип функции. Реализация функции дается в виде лямбда-выражения на правой стороне экрана. Тело функции ничего не возвращает; следовательно, тип возврата, указанный для функции - Unit.
➋ executor () - это функция, которая принимает другую функцию в качестве параметра; этот параметр называется действием, а его тип - функция, которая записывается как () → Unit. В частности, этот тип функции ничего не возвращает, поэтому он объявлен как Unit.
➌ Добавив пару круглых скобок к имени параметра, мы можем вызвать функцию.
➍ Это еще один способ вызова функции действия, но вызов его как action () более идиоматичен и, следовательно, предпочтительнее.
➎ Внутри основной функции мы вызываем executor () и передаем doThis. Обратите внимание, что мы не передаем doThis () в круглых скобках. Мы не хотим вызывать doThis, а затем передавать полученное значение в executor(). Мы хотим передать doThis не как результат значения, а как определение функции. Идея состоит в том, чтобы вызвать doThis в теле функции executor().
В листинге 5-4 мы написали doThis как свойство, значение которого является лямбда. Это прекрасно, но может показаться неестественным способом написания функций. Другой способ написать листинг 5-4 показан в листинге 5-5.
[bookmark: _GoBack]Листинг 5-5. Другой способ написания примеров использования doThis и executor ()
fun doThis() { ➊
 println ("action")
}
fun executor(action:() -> Unit) {
 action()
}
fun main(args: Array<String>) {
 executor(::doThis) ➋
}

➊ doThis теперь определяется так же, как мы пишем функции, с ключевым словом fun и именем функции в заголовке.
➋ :: doThis вызывается с двойным двоеточием. Это означает, что мы разрешаем функцию в текущем пакете.
Лямбда и анонимные функции
Лямбда-выражения и анонимные функции называются функциональными литералами. Это функции, которые не объявляются, а скорее передаются немедленно как выражение - чаще всего в функцию более высокого порядка. Из-за этого им не нужно имя. Ранее в этой главе мы использовали лямбда-выражения. В листинге 5-3 мы определили свойство с именем doThis, тип которого является функцией, но это довольно подробный способ работы с типом функции. На самом деле нам не нужно явно писать возвращаемый тип функции, потому что Kotlin может сделать это за нас. В листинге 5-6 показана более сжатая версия листинга 5-3.
Листинг 5-6. Краткая версия листинга 5-3
val doThis = {
 рrintln ("действие")
}
Как вы видели в предыдущем разделе, этот вид кода предназначен для передачи в качестве аргумента функции более высокого порядка. Но на самом деле вы можете использовать это, не передавая его функции более высокого порядка. Чтобы вызвать его, вы можете сделать что-то вроде следующего - предположительно внутри функции main или любой другой функции верхнего уровня doThis () или что-то вроде этого doThis.invoke ()
Первое выглядит более естественно; это также считается более идиоматическим, так что нам, вероятно, стоит его использовать. В любом случае лямбда-выражения не предназначены для такого использования. Они действительно сияют, когда используются в контексте функций более высокого порядка. В листинге 5-5 мы использовали полную синтаксическую форму лямбда-выражений, когда передали именованное лямбда-выражение в функцию более высокого порядка. Хотя вы, безусловно, можете это сделать, но это может быть необычный способ встретить лямбда-выражения в дикой природе. Листинг 5-7 - это переработка листинга 5-5, но на этот раз вместо объявления и определения именованной лямбды мы будем просто передавать его как аргумент исполнителю функции более высокого порядка, как показано в листинге 5-7.
Листинг 5-7. Передача лямбда в функцию более высокого порядка
fun main(args: Array<String>) {
 executor(
 { println("do this") } ➊
)
}
fun executor(action:() -> Unit) {
 action()
}

➊ Это функциональный литерал. В листинге 5-5 мы передали doThis - свойство, значение которого было лямбда-выражением. В этом примере мы передаем само лямбда-выражение непосредственно функции более высокого порядка. Лямбда-выражение заключено в парные фигурные скобки, как и тело функции.
Параметры в лямбда-выражениях
Рассмотрим код в листинге 5-8. Если бы мы написали это как лямбда, это выглядело бы, как в листинге 5-9.
Листинг 5-8. Простая функция для отображения строки
fun display(msg:String) {
 println("Hello $msg")
}

Листинг 5-9. Написанная функция отображена как лямбда
{msg: String -> println ("Hello $ msg")}
Вы заметите, что весь заголовок функции, ключевое слово fun и имя функции полностью исчезли, а список параметров был перемещен внутри лямбда-выражения.
Все выражение заключено в фигурные скобки. В лямбда-выражении список параметров записывается слева от оператора стрелки, а тело функции находится справа. Вы также заметите, что параметры в лямбда-выражении не обязательно должны заключаться в пару круглых скобок, поскольку оператор стрелки отделяет список параметров от тела лямбда.
Кроме того, в листинге 5-9 вы можете опустить объявление типа String в параметре, чтобы его можно было записать, как в листинге 5-10.
Листинг 5-10. Опущенное объявление типа в списке параметров
{msg -> println ("Привет, $ msg")}
В некоторых случаях, когда лямбда-выражение принимает только один параметр, как в нашем примере кода, показанном в листинге 5-10, Kotlin позволяет нам опустить объявление параметра и даже оператор стрелки. Мы можем переписать листинг 5-10 еще короче (см. Листинг 5-11).
Листинг 5-11. Неявное это
{println ("Привет, $ it")}
Имя параметра it создается, если контекст ожидает лямбда-выражение, имеющее только один параметр, и, если его тип может быть определен. В листинге 5-12 показан полный код объявления и использования лямбда-выражения в контексте функции более высокого порядка. Сейчас у нас есть версия функционального программирования примера Hello World.
Листинг 5-12. Полный код для примера лямбда
executor({ println("Hello $it") })
}
fun executor(display:(msg:String) -> Unit) {
 display("World")
}

Написание и использование лямбда-выражений с более чем одним параметром не сильно отличается от нашего примера с одним параметром, если вы пишете список параметров слева от оператора стрелки. См. пример в листинге 5-13.
Листинг 5-13. Лямбды с более чем одним параметром
fun main(args: Array<String>) {
 doer({ x,y -> println(x + y) })
}
fun doer(sum:(x:Int,y:Int) -> Unit) {
 sum(1,2)
}

Могут быть случаи, когда функция более высокого порядка будет принимать некоторые другие параметры вместе с типами функций. Такая функция могла бы выглядеть, как листинг 5-14.
Листинг 5-14. Функция высшего порядка с несколькими параметрами
fun executor(arg: String = "Mondo", display:(msg:String) -> Unit) {
 display(arg)
}

Мы можем вызвать эту функцию с помощью такого исполнителя ("Earth", {println ("Hola $ it")}). И поскольку первый параметр исполнителя имеет значение по умолчанию, мы все равно можем вызывать его, как этот исполнитель ({println ("Hola $ it «)})
Kotlin позволяет нам немного точнее использовать синтаксис с лямбдами. В случаях, когда ожидается, что лямбда будет последним параметром в функции более высокого порядка, мы можем записать лямбда вне скобок вызывающей функции, например:
executor() { println("Hello $it")}
А если лямбда является единственным параметром, мы даже можем полностью опустить круглые скобки, как этот:
executor { println("Hello $it")}
Упрощение сейчас может показаться не таким уж большим делом, но я полагаю, что вы оцените синтаксические улучшения позже, когда будете писать все больше и больше лямбда-выражений. Стандартная библиотека Kotlin широко использует эти вещи.

Closures
Когда вы используете лямбда-выражение внутри функции, лямбда может получить доступ к ее закрытию.
Замыкание состоит из локальных переменных во внешней области, а также всех параметров включающей функции. См. пример в листинге 5-15.
Листинг 5-15. Лямбда, доступ к закрытию
fun main(args: Array<String>) {
 executor(listOf(1..1000).flatten()) ➊
}
fun executor(numbers:List<Int>) {
 var sum = 0;
 numbers.forEach { ➋
 if (it % 2 == 0) {
 sum += it ➌
 }
 }
 	println("Sum of all even numbers = $sum")
}

➊ Мы передаем список Ints в функцию executor (). Использование функции rangeTo в форме оператора (..) - удобный способ сгенерировать список целых чисел от 1 до 1000. Но вам нужно будет использовать функцию flatten (), чтобы сделать его списком Ints.
➋ forEach - функция более высокого порядка; он принимает лямбду, которая позволяет нам перемещаться по элементам в списке. У forEach есть только один параметр, и мы можем получить доступ к этому единственному параметру, используя неявное имя параметра it.
➌ Суммарная переменная является частью замыкания; именно в теле функции определяется лямбда. Лямбды имеют доступ к их закрытию.
Примечание. В лямбдах Java вы можете получить доступ к закрывающей переменной, только если та же самая переменная является окончательной. В Котлине такого ограничения нет.
with и apply Лямбда-выражения широко используются в Котлине, их след повсюду в библиотеке Котлина. В этом разделе мы рассмотрим функции стандартной библиотеки и их применения, в частности, из Standard.kt. Эти функции демонстрируют возможности лямбда-выражений Kotlin и то, что отличает их от своих Java-аналогов. Лямбда-выражения Kotlin могут вызывать методы другого объекта без дополнительных квалификаторов в теле лямбда-выражения. Эти виды лямбд называются лямбдами с приемниками.
Функции with и apply представляют особый интерес не потому, что они позволяют нам выполнять несколько операций с одним и тем же объектом без повторения имени объекта - что является желанной функцией, - а потому, что они выглядят так, как будто они были встроены в язык и не являются чем-то инородным в теле языка. Это просто функции, которые были сделаны специальными функциями расширения и лямбда-выражениями.
Листинг 5-16 показывает определение простого класса и то, как установить некоторые из его свойств. Создание экземпляра события и установка его различных свойств происходит внутри функции main. Обратите внимание, что для каждого установленного нами свойства мы должны явно преобразовать свойство обратно в ссылку на объект, и это может быть просто замечательно - в конце концов, именно так мы кодировали на Java и такая рутинная работа в некотором роде ожидалась.
Листинг 5-16. Класс Событие
import java.util.Date
data class Event(val title:String) {
 var date = Date()
 var time = ""
 var attendees = mutableListOf<String>()
 fun create() {
 print(this)
 }
}
fun main(args: Array<String>) {
 val mtg = Event("Management meeting")
 mtg.date = Date(2018,1,1)
 mtg.time = "0900H"
 mtg.attendees.add("Ted")
 mtg.create()
}

Если бы мы использовали функцию with для рефакторинга кода, она выглядела бы так, как показано в листинге 5-17.
Листинг 5-17. Использование функции With
fun main(args: Array<String>) {
 val mtg = Event("Management meeting")
 with(mtg) {
 date = Date(2018,1,1)
 time = "0900H"
 attendees.add("Ted")
 }
}

Функция with принимает объект (mtg) и лямбду. Внутри лямбда-выражения мы можем работать с объектом mtg без необходимости явно ссылаться на него. Это стало возможным благодаря тому, что объект mtg был преобразован в приемник лямбда - помните функции расширения в главе 3? И поскольку mtg является получателем, внутри лямбда ключевое слово this указывает на объект mtg. Мы могли бы явно сослаться на это в нашем коде, но это было бы не лучше, чем, когда мы впервые начали с этого примера.
Если опустить явную ссылку на это, полученный код будет намного чище. Кроме того, в этой ситуации определенно работает соглашение о помещении лямбда за скобками, поскольку оно заставляет конструкцию выглядеть так, как будто with является частью языка Kotlin.
То же самое можно сделать с помощью функции apply; она почти очень похожа на функцию with, за исключением того, что возвращает получателя (переданный ей объект) - функция with этого не делает.
fun main(args: Array<String>) {
 val mtg = Event("Management meeting")
 mtg.apply { ➊
 date = Date() ➋
 time = "0900H"
 attendees.add("Ted")
 }.create() ➌
}

➊ Apply - это функция расширения, и объект mtg становится ее получателем.
➋ И поскольку объект mtg является получателем, это относится к объекту mtg.
➌ Когда лямбда возвращается, она возвращает получателя, который является объектом mtg; следовательно, мы можем связать в него несколько вызовов.
В Standard.Kt есть гораздо больше функций, таких как run, let, also и т. д., но эти два примера с использованием with и apply должны дать нам представление о том, на что способны лямбды.
Краткое содержание главы
• Функции в Kotlin - это больше, чем просто именованный набор утверждений. Они тоже прообраз. Тип функции можно использовать везде, где можно использовать другие типы - функции в Котлине являются первоклассными.
• Лямбда-выражения и анонимные функции являются функциональными литералами. Они похожи на обычные функции, но у них нет названия. Их можно передавать (другим функциям) сразу в виде выражения.
• Лямбды Kotlin, в отличие от лямбда-выражений Java (по крайней мере, Java 9 на момент написания этой статьи), могут изменять переменные в своем закрытии.
• Функции высшего порядка - это функции, которые работают с другими функциями.
Они могут принимать типы функций в качестве параметров или возвращать типы функций.
В следующей главе мы рассмотрим классы Kotlin's Collection.
